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ABSTRACT

The general nonlinear diff erential equations describing the interaction
of finitely deformable, polarizable, heat conducting intrinsic n-type semi-

conductors with the quasi-static electric field are transformed from the un-

known present coordinate description to the known reference coordinate descrip-

tion, which is the form needed in the treatment of problems. From the dif-

ferential form of each balance equation in the reference coordinate descrip-
tion, the associated integral form is obtained. The resulting integral forms

turn out as expected with the exception of the one due to the balance of

linear momentum for the semiconducting fluid, in which an important change in
and simplification from the form used heretofore is introduced. More import-

antly, the previous existing integral form of the equation of the balance of

energy in the present coordinate description is transformed to a di fferent
form, which is equivalent to the original form only when the field variables
are differentiable. The revised integral form in the present coordinate

description is then transformed to the reference coord inate description ,

from which an energetic jump condition across a moving non—material surface

of discontinuity is obtained which is cons istent wi th al l the other jump
conditions obtained from the other integral form s. In addition, the expres—

sion for the quasi-static electric Poynting vector in the reference coordinate

description is determined.
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1. Introduction

In a treatment of the interaction of the quasi—static electric field

with a finitely deformable, polarizable, heat conducting, dielectric continuum

a system of rotationally invariant differential equations and jump conditions

were derived
1
. First, the differential equations were obtained from a

systematic application of the laws of continuum physics to a well-defined

macroscopic model. Then, the integral forms obtained from the respective

differential forms were taken to be valid across moving surfaces of discon-

tinuity even when the differential forms from which they were obtained did

not hold because of the lack of differentiability across the singular surface.

This is a standard, perfectly reasonable procedure for obtaining the governing

integral forms for an interacting continuum. The jump conditions across moving,

not necessarily material, surfaces of discontinuity were then obtained from

the respective integral forms. The resulting integral forms and associated

jump conditions were referred to the unknown present (spatial) coordinates

of material points whereas it would have been more useful to refer them to

the known reference (material) coordinates of material points. However , this

is not a severe limitation since it is a straight—forward matter to transform

from present to reference coordinates of material points using well known

relations. Nevertheless, although in the work1 in question the appropriate

reference forms of the jump conditions for the balance of mass , linear

momentum, charge and entropy may readily be obtained in the aforementioned

manner, the reference form of the jump condition for the balance of energy

may not be obtained directly from the equations presented in Ref .l. Indeed ,

although the integral form of the equation of the balance of energy is not

incorrect, the present form of the jump condition for the balance of energy

presented there’ is not directly useful for application to problems concerning



2 .

the propagation of surfaces of discontinuity and, hence, is not actually

correct . This dilemma is a consequence of the fact that  the integral form of

the balance of energy is not unique because the differential form can have

terms added to it which vanish at each volumetric point and yet give surface

terms. Since the field variables are not differentiable when the jump condi-

- • tions are obtained from the integral forms, the different integral forms

yield different jump conditions which are not equivalent. In a later work
2

• the treatment was extended from the case of deformable insulators
1 
to de—

formable semiconductors. In the latter work2 although an integral form of

the equation of the conservation of energy is written, the associated jump

condition is not because the authors were aware of the problem involved .

In this paper the proper revised differential form of the equation of

the conservation of energy is found for the more general case of the deformahie

semiconductor . From the revised differential form the appropriate integral

form of the equation of the conservation of energy is obtained in both the

• present and reference coordinate descriptions,from which the required correct

energetic jump condition in the reference coordinate description is obtained.

One by-product of this work is the determination of the proper expression for

the quasi-static Poynting vector in the reference coordinate description.

In addition to the foregoing a new integral form of the equation of the

conservation of linear momentum for the free-electronic charge continuum is

introduced. The new form is better for obtaining j ump conditions because

certain assumptions that had to be made in obtaining jump conditions from the

previous form2’3 need not be made with the present form. Moreover, the jump

condition at a material surface of discontinuity resulting from the present

form will be different from and more convincing than the one obtained from

the previous form.
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I

2 . Basic Equations

It has been shown2 that a system of general nonlinear rotationally in-

variant differential equations for deformable intrinsic n—type semiconductors

can be written in the form
3

(T~~~ + T~~ — ~e6~~ ) •  = Pdv~/dt~ (2.1)

~~.L/~~t + = 0 , D~~~1 = (2.2)

E
~ 

= ((p ÷~~
e) E . =- cP 1. (2.3)

t ; 1 4 )

• T~~ = C E . E , - € E E 8.. (2 . 5)
ij  o i j  2 o k k i j ’

_IJ,eEe(v
e 

- V .)  - 
~~~~~~~~ 

= p &d’fl/dt , (2.6)

S ESwhere T~~• and T ,. , denote the sytrnnetric parts of the usual mechanical and

free—space Maxwell electrostatic stress tensors, respectively ; v~ , v .,

E., D., j .  and q . denote the velocity of the free electronic fluid, velocity

of the solid, local material electric field exerted on the free electronic

fluid, Maxwell electric field, electric displacement, electric current and

heat f lux vector, respectively; ~e ~e 
~ (p ~e ~~~

, 
~~~

, 0 and 11 denote the

free electronic charge density, free electronic pressure, mass density,

electric potential, free electronic chemical potential, net charge density.

residual lattice charge density, temperature and entropy per unit mass,

respectively ; and € is the permittivity of free space. The motion of a

point of the solid is described by the mapping

~~ 
= ~~~~~~~~ (2.7)

where y. denotes the present coordinates of material points and X
L. 

the

reference coordinates, and t denotes the time. Clearly, we have

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •



r ~~~~~~~~~~~~~~~~~~ 

— 
___ 

-

V . ~~~~~~~ (2.8)
1 1

A. .

In (2.1)— (2.8) we have used Cartesian tensor notation, the summation con—

vention for repeated tensor indices, the convention that a comma followed by

an index denotes partial differentiation with respect to a coordinate, and

the convention that capital indices refer to reference coordinates and lower -

case indices to present coordinates of material points.

• The associated constitutive equations take the form

S
T • •  = PYi,~~ j ,L ~~~~ 

D~ = €
0
E
~ 

— 

~
‘i,L ~~~~~~~ 

(2.9)

- v~ = 

~~~~~~~~ 
~~ ~~~~. 

= 

~~~~~~~~ 
(2 . 10)

= (~~e ) 2~~~e,~~~e 
(p
e 

= ~ (I.~
e€e),~~

e 
(2.11)

where

x = X(E~~,W~, 9), ~~ = Q
e
(~
e 
w
e E W 9)

= €
e
(~L
e
) , L~ = LK

(9 M,~Le, w~ , ELM, wL, 9) , (2.12)

and

1 e e
• E~~ 2 ~~~~~~~~~ 

- 8~~ ) , WL = 
~ i L

Ei, wL = 
~i,LEi . (2 .13)

In addition, we have the conservation of mass, which may be written in the

form

= p
0 , (2.14)

where p is the reference mass density and

J = det y. 
~~~~

. (2 . 15)

At this point we note that the above system of equations is referred

to the present coordinates, which are unknown, and, as a consequence, it is

advantageous to refer them to the known reference coordinates. To this end ,

analogous to the Piola-Kirchhoff stress tensor F
L ., which is defined by



n,T . . dS N F . dS (2.16 )L U  o

we define the reference electric displacement vector 
~~ 

by4’5

n .D . d S =  N . ~7 dS (2 . 17)
i i  L L  o ’

where dS and N
L 
denote the magnitude of and unit normal to an element of

• area in the reference configuration, which has magnitude dS and unit normal n .

in the present configuration. By virtue of the well-known relation
6

n , dS=  ,JX . N dS (2 .18 )
1. L, i L  o ’

f rost (2 .16) and (2.17), in the usual way, we find

F . = JX .T .. , = 31 .D . . (2.19)Lj L, i ij  L L, i 3.

By defining the reference free—space Maxwell electrostatic stress tensor M
L.

and free electronic pressure tensor in a similar way we find

= ~~ .T~~~, 9e 
= ~~ ~,e 

(2 . 20)L, ]. 3.J Lj L,J

Now,using (2.19) and (2.20) with (2.1) and (2.2)2 and employing (2.14) along

with the well-known identity
7

~
3x

L i ~~~L 
= O~ (2 .21)

we obtain

(FLj + MLj 
— 

~~ j~~~L 
= P0

dv~/dt~ (2.22)

= (2.23)

where

~t = j~~~. (2.24)

Equation (2.22) is the Piola-Kirchhoff form of the stress equations of motion

for the combined deformable semiconducting continuum and Eq. (2.23) is the

_ _ _ _ _ _ _  —.— - • - ~~ • • -~~~-~~- .—
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• reference form of the charge equation of electrostatics. From (2.3), the

chain rule of differentiation and (2.13)3. we obtain

w~ = ((p + 
e

) (2.25)

which is the reference form of the equation of the conservation of linear

• momentum for the free electronic charge continuum.

In order to refer the conservation of total electric charge to the known

reference configuration X
L 
instead of the unknown present configuration y.

to which it is referred in (2.2)1, we write

j~~~~ j1
—~~ v1, (2.26)

the substitution of which in (2.2)i along with the aid of (2.24) and the

well—known relations

d/d t = (~/~ t)  + v
k~
/
~
yk, Vk k  = J

1
dJ/dt , (2.27)

yields

j~~~. + J
1
dl.i/ dt= 0 . (2.28)

• Now, we define the reference electric current vector by

n.j!d S = N 19 dS , (2.29)
ii L L  o

which with (2.18) yields

= 3 1 .j~~, (2.30)

from which with (2.28) and (2.21) we obtain

~L,L 
+ d~T/dt = 0, (2.31)

which is the reference form of the conservation of total electric charge. 

-~~~~~~~~ -- — -.- •. -~~~~~~~~ . • — - -- ---~~~~.• - • - - •~~~~
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Analogous to the foregoing, we now define the reference heat flux

vector 
~L by

n.q. dS N
L
Q
L~

4IS , (2.32)

which with (2.18) yields

= 
~~~~~

‘i 
(2.33)

Substituting from (2.10)1, (2.13) and (2.33) into (2.6) and employing (2.14)

• and (2.21) we obtain

~
e
W Q  - 

~L,L 
= p

0
e dT1/d,t , (2.34)

where
e

= Jp~ . (2.35)

• Equation (2.34) is the reference form of the dissipation equation. The

associated reference form of the Clausius-Duhem inequality takes the form

+ 
(~~~ ),~~~

= —  ! 
[

Q
L
e
,L 

+ ~~w~c2~J = p F  � 0 , (2.36)

where F is the (positive) rate of entropy production.

From 
~
2’4

~ i’ 
(2.9), (2.10), (2.19), (2.26), (2.30), (2.33) and

(2.35) the pertinent constitutive equations can 1~ written in the form

F
L

. = 
~~~~~~~~~ 

~~LM 
‘ ~L 

= 
~o

’
~L 

- 
~0 

~~L 
(2.37)

~~~L
’ 

~K ~~K ’ (2.38)

where

= 31 .E . , (2.~~9)L L,i i

and the constftutive equations in (2.11) and (2.10)
2 

rema in unchanged along

with the expressions for X, ~~;, 
€e and LK in (2.12) and, of course, (2.5)

and (2.20) are to be employed . From (2.3)
2 

and (2.13)
2 

we note that 

~

-

• •~~~~~• •~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The integral forms of Eqs . (2 . 22) , (2 . 23) , (2 . 25) , (2 . 31) and

referred to the known reference coordinates of material points, whi

prime interest to us here, clearly may be written

N
L
(F
Lj 

+ - ~~ .)dS = P~V~~dV~~,

N~b~ dS

s~~dV~,= N~~(q + ~ e ) ds0 ,

N~~2~~dS
0
=~ 

~~

p~~~dV~~+ ~~~~~~~~~~ + ~LW Ll~~o 0 .

The integr~.l form in (2.43) is diff~rent than the equivalent equati

has been employed heretofore
2
’3’8. Equation (2.43) is a bettei for

obtaining the jump condition for the free-electronic charge continu

both material and nonxnaterial surfaces of discontinuity. Since Eq.

does not contain the free electronic charge density ~
e 
explicitly,

assumption on the boundedness of 1~
e need be made in obtaining jump

and, as a consequence, the resulting jump conditions are independen

Maxwell tensor and the associated assumptions that have been used p

From the integral forms in (2.41) - (2.45) , jump conditions across ni

necessarily material surfaces of discontinuity can readily be ohtai

suitable assumptions. For example, at a nonmaterial surface of dis

_ _ _ _ _ _ _  _
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9.

• we assume that all volumetric density terms remain bounded and in the usual

• 
I way obtain

N
L
[d
Lj

!=_ UNPO
(V
j
I
~ 

N
LU~L

] = 0, ((~~~(p
e
] = 0 , (2 .46)

N
L
[
~L
! = UN !i2i

~~ 
N

~~
QL

/O] - UNP [11] � 0 , (2.47)

where U
N 

is the intrinsic9 velocity of the singular surface, we have introduced

• the conventional notation (a] for a - a
+ 

and

d . = F . + M_ . - ~~~~. . (2.48)Lj Lj L,j Lj

Since E . remains bounded we have
:1. ,

(p] 0, (2.49)

• and, hence, front (2.46)
3 

we obtain

(2.50)

The integral form of the equation of the conservation of energy and

associated jump condition ha~ not been discussed here because the existing

integral form has to be revised in accordance with the detailed discussion

presented in the next section.

3. Integral Form of the Balance of Energy

In this section we consider the equation of the conservation of enerav

for the deformable intrinsic n-type semiconductor, the integral form of whir~

may be written

d r rl  e e  1 1 1’
d t J  L~~~ 

PVk
V
k +P€ +

~ 2 
€ E

k
EkJdV= ~ 

‘~~•~~~~~~ • • “ •~~~~~~~ v . -

V S

h.—q . — (v~~
_ v

j)~~ e
e +v

i
P
k
E
k
+vj 2 ~o~ k~k

’ dS . (3.1)

• where 
~k 

denotes the electric polarization per unit volume and for t }~ 4~ quasi-

10
static electric field
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1

h . = (p[(~D./~t) + i.] (3.2)
1 1 1

in MKS units. Equation (3.1) is the extension of Eq. (5.4) of Ref.1 for the

• • 
defomnable insulator to the deformable intrinsic n-type semiconductor and is

• also Eq. (4.14) of Ref,2 when reduced to the special case of the intrinsic

n-type semiconductor in a quasi—static electric field. Since the total stress

tensor S.. appears in the equation of the conservation of linear momentum for

the c ’mbined continuum, i.e., (2.1), (2.22) and (2.41). we write

= T , , + T~~. 
— ~e5 , , (3.3)

13 13 ij 13

where
• T~~. = r D . E . -~~~~~€ E E  o . .1  T.. T~~.-P .E . . (3.4)

13 L i J  2 okkij.j ’ ij  i j  i j ’

and since

D . = € E , + P. , (3.5)
1 0 1  1

from (3.3) — (3.5) and (2.5) we note that in addition

S .. = T~~. + T~ - 
e
8 , (3.6)

13 13 13 .13

We now substitute from (3.3 ) with 
~~~~~~ 

(2.4)1. (2.11), (2.26), (3.2) and

(3.5) into (3.1) to obtain

~~~ ~~ ÷ 
~~ 

+~~~~ € ° + ! € E E 1 dV = r fl ,~ S. .v .dt ‘~~L2 kk 2 o k k J  .~ iL- i ) )
V 

~D . S

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (pj - q.~~ dS. (3.7)

Now, consider the term

1n . (E . D . v . - D . E . v .] dS = t , (3 .8)
.J 1 ) 3 1 1))
S

the applica tion of the divergence theorem to which yields

t = I fE . D , v . - D .E .v .] . dV . (3 .9)
3 3 1 1 3 3 , 1

V

L . - •~ • •~~~~~~~~~~~~~~~~~~~ • • • • • • • • _ •~~~~~ •
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Moreover, appropriate differentiation and the substitution of (2.3)2 enables

I
- the integrand in (3.9) to he written

(E . D .v . - D . E .v .)  . = -  [~p(D .v . - D.v .) .1 . , (3 . 10)
3 3 1 1 3 3 , 1 3 1  1 3 , 1 ,3

since

(D .v. — D. v .)  . .  = 0 , (3 . 11)
3 1 1 3 ,13

Substituting from (3 . 10) into (3 .9) , employing the divergence theorem and

(2 . 2) 2, we obtain

-
. 

t = -  I n .(p (D . .v . + D .v . . - D . v . . - ~Lv .) dS , (3 .12)
-• 

~I 1 1,3 3 1 J,J 3 1, 3  1 -

the substitution of which into (3 , 7) yields

~~~ S ~~~ 
pv kvk + p e + I L e + 

~D . 

~ ~~~~~~~~~~~~~~~~~~~ +

+ + — (pej I _ q ~~ dS , (3 . 13)

in place of (3.7). Equation (3.13) is another integral form of the equation

of the balance of energy referred to present coordinates , which is entirely

equivalent to (3.7) when the field variables are differentiable. However,

when the f ie ld  variables are not d i f ferent iable, the two integral forms

obviously are not equivalent.

Equation (3 . 13) is the appropriate form for obtaining the energetic

jump condition in the reference coordinate description while Eq. (3.7) is not.

To see th is note tha t the material time derivative of the reference electric

displacement vector defined in (2.19)
2 may be written

~~ ~‘L = 
~~~~~~~~~~ 

+ v~D1~~ — ~~~~~~ + v~~ i
Di] ~ (3 . 14)

where (2.7)
2 and the well-known relation

(d/dt)X . = —  X ,v . . , (3 .15)
K,i 1 , 3  

- • •~~~~~~~~~~~~~ - • -• •~~~~~~~~~~~--~~~~~~~~~ - ••• -- -• • - -,  -



4 . have been employed in obtaining (3.14) from (2.19)2. 
Now, substituting from

(3.14) , (3.6), (2 .14), (2.16), (2.18), (2.20), (2.26), (2.29), (2.32), (2.35)

( and (2.48) into (3.13), we obtain

~~ 
p v

k
v
k
+ p e +

~~~
€ + 

~~ 
€ E ~E~J]dV = SNJIL .V .

- 
P(ã

~~~L 
+ 
~L) 

- 

~L 
- 

~Ll dS0, (3.16)

which is the integral form of the balance of energy in the reference coordi—

nate description we have been after. An examination of (3 .16 ) reveals that

the quasi-static electric Poynting vector referred to the known reference

- 

- - 
coordinates takes the form

hL 
= ~~~~~~~ 

~L 
+ IL)’ (3.17)

in MKS units. The energetic jump condition across moving non—material

surfaces of discontinuity may readily be obtained from (3.16) by assuming

that all volumetric density terms remain bounded with the result

N
L
[d
L .
V . - h

L 
- 

~L - 

~LL 
u
NPo

!Q] , (3.18)

where h
U 

is given in (3.17) and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3.19)

It should be noted that the jump condition in (3.18) is consistent with all

the other jump conditions appearing in Sec.2, while the j ump condition

obtained from (3.1) [or (3,7)1 would be inconsistent with the jump condition

in (2.46 )1in most cases.
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